Future Wireless Networks

Ubiquitous Communication Among People and Devices

Course Information* People

- Instructor: Andrea Goldsmith, andrea@ee, Packard 371, 5-6932, OHs: MW after class and by appt.
- TA: Nima Soltani, Email: nsoltani@stanford.edu, OHs: around HWs.
- Class Administrator: Pat Oshiro, poshiro@stanford, Packard 365, 3-2681.

Design Challenges

- Wireless channels are a difficult and capacitylimited broadcast communications medium
- Traffic patterns, user locations, and network conditions are constantly changing
- Applications are heterogeneous with hard constraints that must be met by the network
- Energy and delay constraints change design principles across all layers of the protocol stack

Wireless Network Design Issues

- Multiuser Communications
- Multiple and Random Access
- Cellular System Design
- Ad-Hoc Network Design
- Network Layer Issues
- Cross-Layer Design
- Meeting Application Requirements

Multiuser Channels: Uplink and Downlink

Uplink (Multiple Access Channel or MAC): Many Transmitters to One Receiver.

Downlink (Broadcast Channel or BC): One Transmitter to Many Receivers.

Uplink and Downlink typically duplexed in time or frequency

Bandwidth Sharing

Ideal Multiuser Detection

Why Not Ubiquitous Today? Power and A/D Precision

Random Access

- Dedicated channels wasteful for data
 - use statistical multiplexing
- Techniques
 - Aloha
 - Carrier sensing
 - Collision detection or avoidance
 - Reservation protocols
 - PRMA
- Retransmissions used for corrupted data
- Poor throughput and delay characteristics under heavy loading
 - Hybrid methods

Scarce Wireless Spectrum

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

RADIO SERVICES COLOR LEGEND				
AEROWALITER. MOBLE	MTEN-GATELU	NE .	PADIO ASTRONOMY	
AERONAUTEAL MOBILE SATELLITE	LAND HORIE		PADRODETERMINATION SATELLINE	
AERONALTER. PADONANGATEM	LAND MOBILE SATELLITE		PADIOLOCATION	
AMATEUR	WRITHEND	LE 📃	PADROLOCATION SATELLITE	
AMATEUR SATEULTE	WARTINE MOR SATELLITE	LE CONTRACTOR	PADIONAVIGATION	
BEDADCASTING	MARTINE FACINIMANDAT	KN	RADIONAVIGATION SATELLITE	
BROADCASTING SATELLITE	METEOROLOG ADG	24	SPACE OPERATION	
EARTH EXPLORATION SATELLITE	METEOROLOG SATELLITE	DAL	SPACE REJEATCH	
FØED	MOREE		STANDARD FREQUENCY AND TIME STOKAL	
FPED SATELLITE	MOBLE SATEL	INE	STANDARD FREQUENCY AND THE SIGNAL SATELLITE	
ACTIVITY CODE				
GOVERNMENTEXCUR	sve G	COVERIMENTINON-COVERIMENT SAVED		

NON-GOVERIMMENT EXCLUSIVE

ALLOCATION USAGE DESIGNATION

and Expensive

Spectral Reuse

Due to its scarcity, spectrum is *reused*

In licensed bands

Cellular, Wimax

and unlicensed bands

Wifi, BT, UWB,...

Reuse introduces interference

Interference: Friend or Foe?

• If treated as noise: Foe

$$SNR = \frac{P}{N + I}$$

Increases BER *Reduces capacity*

- If decodable (MUD): Neither friend nor foe
- If exploited via cooperation and cognition: Friend (especially in a network setting)

Cellular Systems

Reuse channels to maximize capacity

- 1G: Analog systems, large frequency reuse, large cells, uniform standard
- 2G: Digital systems, less reuse (1 for CDMA), smaller cells, multiple standards, evolved to support voice and data (IS-54, IS-95, GSM)
- 3G: Digital systems, WCDMA competing with GSM evolution.
- 4G: OFDM/MIMO

MIMO in Cellular: *Performance Benefits*

- Antenna gain ⇒ extended battery life, extended range, and higher throughput
- Diversity gain ⇒ improved reliability, more robust operation of services
- Multiplexing gain \Rightarrow higher data rates
- Interference suppression (TXBF) ⇒ improved quality, reliability, robustness
- Reduced interference to other systems

Rethinking "Cells" in Cellular

How should cellular systems be designed?

Will gains in practice be big or incremental; in capacity or coverage?

• Traditional cellular design "interference-limited"

- MIMO/multiuser detection can remove interference
- Cooperating BSs form a MIMO array: what is a cell?
- Relays change cell shape and boundaries
- Distributed antennas move BS towards cell boundary
- Small cells create a cell within a cell (HetNet)
- Mobile cooperation via relaying, virtual MIMO, analog network coding.

Ad-Hoc/Mesh Networks

Cooperation in Ad-Hoc Networks

- Similar to mobile cooperation in cellular:
 - Virtual MIMO, generalized relaying, interference forwarding, and one-shot/iterative conferencing
- Many theoretical and practice issues:
 - Overhead, half-duplex, grouping, dynamics, synch, ...

Capacity Gain with Virtual MIMO (2x2)

- TX cooperation needs high-capacity wired or wireless cooperative link to approach broadcast channel bound
- Gains on order of 2x in theory, what about in practice?
- How many nodes should cooperate, and with whom?

Generalized Relaying

- Can forward message and/or interference
 - Relay can forward all or part of the messages
 - Much room for innovation
 - Relay can forward interference
 - To help subtract it out

Beneficial to forward both interference and message

In fact, it can achieve capacity

Intelligence beyond Cooperation: Cognition

- Cognitive radios can support new wireless users in existing crowded spectrum
 - Without degrading performance of existing users
- Utilize advanced communication and signal processing techniques
 - Coupled with novel spectrum allocation policies
- Technology could
 - Revolutionize the way spectrum is allocated worldwide
 - Provide sufficient bandwidth to support higher quality and higher data rate products and services

Cognitive Radio Paradigms

- Underlay
 - Cognitive radios constrained to cause minimal interference to noncognitive radios

• Interweave

• Cognitive radios find and exploit spectral holes to avoid interfering with noncognitive radios

• Overlay

• Cognitive radios overhear and enhance noncognitive radio transmissions

Knowledge and Complexity

Underlay Systems

- Cognitive radios determine the interference their transmission causes to noncognitive nodes
 - Transmit if interference below a given threshold

- The interference constraint may be met
 - Via wideband signalling to maintain interference below the noise floor (spread spectrum or UWB)
 - Via multiple antennas and beamforming

Interweave Systems

- Measurements indicate that even crowded spectrum is not used across all time, space, and frequencies
 - Original motivation for "cognitive" radios (Mitola'00)

- These holes can be used for communication
 - Interweave CRs periodically monitor spectrum for holes
 - Hole location must be agreed upon between TX and RX
 - Hole is then used for opportunistic communication with minimal interference to noncognitive users

Overlay Systems

- Cognitive user has knowledge of other user's message and/or encoding strategy
 - Used to help noncognitive transmission
 - Used to presubtract noncognitive interference

Performance Gains from Cognitive Encoding

Cellular Systems with Cognitive Relays

Cognitive Relay 2

Enhance robustness and capacity via cognitive relays

- Cognitive relays overhear the source messages
- Cognitive relays then cooperate with the transmitter in the transmission of the source messages
- Can relay the message even if transmitter fails due to congestion, etc.

Can extend these ideas to MIMO systems

Wireless Sensor and "Green" Networks

- Data flows to centralized location (joint compression)
- Low per-node rates but tens to thousands of nodes
- Intelligence is in the network rather than in the devices
- Similar ideas can be used to re-architect systems and networks to be green

Energy-Constrained Nodes

- Each node can only send a <u>finite</u> number of bits.
 - Transmit energy minimized by maximizing bit time
 - Circuit energy consumption increases with bit time
 - Introduces a delay versus energy tradeoff for each bit
- Short-range networks must consider transmit, circuit, and processing energy.
 - Sophisticated techniques not necessarily energy-efficient.
 - Sleep modes save energy but complicate networking.
- Changes everything about the network design:
 - Bit allocation must be optimized across all protocols.
 - Delay vs. throughput vs. node/network lifetime tradeoffs.
 - Optimization of node cooperation.

Cooperative Compression in Sensor Networks

- Source data correlated in space and time
- Nodes should cooperate in compression as well as communication and routing
 - Joint source/channel/network coding
 - What is optimal for cooperative communication:
 - Virtual MIMO or relaying?

Green" Cellular Networks

How should cellular systems be redesigned for minimum energy?

Research indicates that signicant savings is possible

• Minimize energy at both the mobile <u>and</u> base station via

- New Infrastuctures: cell size, BS placement, DAS, Picos, relays
- New Protocols: Cell Zooming, Coop MIMO, RRM, Scheduling, Sleeping, Relaying
- Low-Power (Green) Radios: Radio Architectures, Modulation, coding, MIMO

Crosslayer Design in Wireless Networks

Tradeoffs at all layers of the protocol stack are optimized with respect to end-to-end performance

This performance is dictated by the application

Key Application: Smart Grids

The Smart Grid Design Challenge

- Design a unified communications and control system overlay
- On top of the existing/emerging power infrastructure
 - To provide the right information
 - To the right entity (e.g. end-use devices, transmission and distribution systems, energy providers, customers, charge how energy is
 - At the right time delivered, and consumed To take the right action Sensing
 - To take the right action

Possible Dichotomy for Smart Grid Design

Automated Highways

Interdisciplinary design approach

- Control requires fast, accurate, and reliable feedback.
- Wireless networks introduce delay and loss
- Need reliable networks and robust controllers
- Mostly open problems : Many design challenges

Wireless and Health, Biomedicine and Neuroscience

Telemedicine

Body-Area Networks

Doctor-on-a-chip

-Cell phone info repository -Monitoring, remote intervention and services

The brain as a wireless network

- EKG signal reception/modeling
- Signal encoding and decoding
- Nerve network (re)configuration

EHR